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ABSTRACT

Asymptotic procedures are given for testing certain hypotheses con-

cerning eigenvectors and for constructing confidence regions for eigen—

vectors. These asymptotic procedures are derived under fairly general

conditions on the estimates of the matrix whose eigenvectors are of

interest. Applications of the general results to principal components

ana lysis and canonical variate analysis are given.
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1. INTRODUCTION AND SUMNARY

Let N be a (p x p) matr ix  which is symmetric in the metric of the

positive definite symmetric matrix F, i.e. FM is symmetric. Let the

eigenvalues of N be represented by A~ � A
2 

... � A . Also , let N be

a sequence of estimates of N such that a (M — N) converges in d i s t r i b u t i o n
t i n

to a znultivariate norma l d i s t r i bu t ion , wh ere a is an increasing sequence

of real numbers, and let A be an (r x p) matrix with rank (A) = r .

In this paper, under the assumption that X . ~ A . and A . � A .
t 1  ~. L+m— l j +m

the following null hypothesis is considered .

(1.1) H0: the columns of A lie in the subspace generated by the set of

eigenvectors of N associated with the roots A., A . , ... , A .
i. 1~~1

The assumption on the eigenvalues is to be interpreted as A . � A .L+tn— 1 14-tn

when i = 1, and A . 1 ~ A. when j +m— ]. = p.

Under fairly general condition on M , a consistent asymptotic chi—

square test of H is given. This test is based upon the asymptotic

normality of the “orthogonal” projection of the columns of A onto the

subspace generated by the eigenvectors of N associated with the ith to

(i+in~l)th ro~ cs of M
n~

An asymptotic confidence region for the subspace generated by the

eigenvectors of M assoicated with the roots A ., A . , ..., A . is
1 t+l

then given. This confidence region is based upon the asymptotic chi—

square test of H for the special case when r = m. Furthermore , an

asymptotic chi—square test is given for the hypothesis that the subspace

generated by the columns o~ K , a (k 
x p) matrix with rank(K) = k � rn , con—

tains the subspace generated by the eigenvectors of N associated with the roots

_ _  _ _ _ _  
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A .., X .÷1
..., ~~~~~ . This test is constructed by relating this hypothesis

to a hypothesis of the form given in (1.1).

Anderson (1963) gives an asymptotic chi—square test of H for the

special case of m = 1 and when M is the sample covariance matrix from

a multivariate t~ormal sample with population covariance n~atrix M. This

paper is thus a generalization of Anderson ’s results .

James (1977) gives an exact test for a hypothesis similar to (1.1)

when M is the sample covariance matrix from a tnultivariate normal
U

sample with population covariance matrix N. James considers the

hypothesis that the columns of A generate an invariant subspace of N.

His hypothesis does not state with which eigenvalues of N the invariant

space is associated. The approach used by James uses special properties

of the mxnple covariance matrix from a normal sample and does not

readily generalize to other matrices .

For other related works on the distributional and inferential theory

for eigenvectors , the reader is refered to Anderson (1951), Mallows (1961),

Chambers (1967), Izenman (1976) and Suguira (1976).

App lications of the general results in this paper are illustrated

through the following two examples: the principal component vectors for

the covariance matrix of a multivariate normal distribution , and the

canonical vectors associated with two random vectors which jointly have

a multivariate normal distribution.

—3—
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2. PRELIMINARIES

In this section , let S be a (q x q) real matrix which is symmetric in

the metric of a real positive definite syrmnetric matrix T. In order to

establish notation and vocabulary , the eigenvalue problem for S is briefl y re-

viewed below. A more detailed review can be found itt Kato (1966) or

Nerring (1970).

If Sx = Ax for some x ~ 0, then A..is an eigenvalue 
of S and ~ is an eigenvector

of S associated with A. All eigenvalues of S are real. The spectraL set

of 5, denoted B , is the set of all eigenvalues of S. Eigenvalues of

“symmetric” matrices have the following important continuity property.

LENNA 2.1. If the (q x q) matrix S
k 

is symmetric in the metric of

with eigenvalues A
l
(S
k
) � A~(S~) � ... � A~ (S~L and Sk S as

k -~~ ~~~, then A .(s ) ~‘- A .(s) as k -
~

,~ 
k

The eigenspace of S associated with A is V(A) = ~~ I S~ = Ax} ,

where is the set of all q—d imensional real vectors. The dimension of

V(A) is the multiplicity of A , say m(A). If A and ~.i are two distinct

eigenvalues of M , then v (A) and V(~.t) are orthogonal subspaces in the metric

of T. That is, if ~ € V ( A ) and y e V(~i), then x ’Ty = 0.

Since S is symmetric in the metric of T, we have the decomposition ,

= 
~~e8

V A . The eigenprojection of S associated with A , denoted P(A),

is the projection operator onto V (X) with respect to this decomposition

of ~~ If V is any subset of the spectral set 8 , then the total eigen—

projection for S associated with the eigenvalues in V is de.fined to be

P(A ), For any set of vectors {x..} in v (A) such that

—4-,
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I
= 6

jk’ 
where 5jk denotes the Kronecker delta, P(A) has the

representation P(A) 
~~~~x.x!T. Thus P(A) is symmetric in the metric

of t.

The spectral decomposition of S is S = E
A€

AP(A). If all the eigen—

values of S are non—negative, then the square root of S is to be defined

asS = P

A generalized inverse of S is any S such that SSS = S. The Moore—

Penrcse generalized inverse of S, denoted by S~ , can be represented by
+ — A

_i
— 1AE$,A~O 

p (A).

In working with random matrices, it is necessary to introduce the

following notation. I.E B is a (b x t) matrix, then vec(B) is the

transformation of B into a bt—dimensional vector in the following fashion.

Let B = Cb
1~ 

~2 ~~
), where b . is the j th column of ~ , then

(2.1) vec (B) =

If B is a (b x t)  matrix and C is a (c x u) matrix, then the

Kronecker product of B and C is the (bc x tu) ‘partitioned matrix

B Ø C  = tb .
k
C], 3 = 1, 2, ..., b and k l,~ 2,, ..., t with j varying

over rows of matrices and k varying over columns of matrices.

An important property relating the “vec” transformation and the

Kronecker product is

(2.2) vec(BCD) (D’ 0 B)vec(C),

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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. 1

where the dimensions of the matrices B, C, and D are such that the multi-

plications are properly defined . Other properties of the “vec” transfor-

mation and the Xronecker product can be found in Neudecker (1968, 1969).

The commutation matrix or permuted identity matrix is the (ab X ab)

matrix I = 5.. 0 E.., where E.. is an (a x b) matrix with(a ,b) i l  j l  ij Li

a one in the (i,j) position and zeroes elsewhere. The commutation matrix

has been extensively investigated recently by Magnus and Meudecker (1979).

Two important properties of the commutation matrix are

(2.3) 1(a b ) vec(B) vec(B ’), and

(2.4) 1(a,b) (C 0 D) = (D 0 c)L(C d)’

where B j a  (bx a), C is (b x d), andDjs (a~ c c).

If Y is a random vector, let var(Y) represent the covarinace-

matrix of 
~~~
. If B is a random matrix, then for convenience , var[vec(B)J

is to be written as var(S).

3. ASSUMPTIONS

In order to form an asymptotic test for (1.1), a sequence of estimators

14 for M are needed which satisfies the following assumptions .

ASSUMPTION 3.1.

(i) H is syimnetric in the metric of r , a positive definite sym-
metric matrix, with r -

~~ r ~~ probability .

(ii) a (M —M) -~~ N in distribution , where a is an increasing se-

quence of positive numbers such that a~ 9 
~ as n ~ ~ , and N is a multi—

variate normal matrix with zero mean and var(N)

(iii) For B which is (p x p), ~vec (rB) 0 implies M (B + 8’) 0.

—6—
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I
It is also necessary to have a sequence of estimators 1n for I which

satisfies the following properties.

ASSUNPTION 3.2

(i) ~ is symmetric and positive semi—definite.

(ii) 1 1 in probability.

(iii) Let ~ = {Z vec (F B) = 0 implies N (B + B ’) = o} thenn n n

Prob(c2 ) -‘ 1.
U

Finally, it is to be understood that the asymptotic procedures given

in this paper are only defined on the set

A A A A
(3.1) C = [A . ~ A . and A . ~ A. }

U i’l 1 t+m 1 i+m

A A A
where A � A � ... � A are the eigenvalues of N . It is irrelevant1 2 p n

to the asymptotic properties of the procedures what action is taken on

the complement of C , since by the continuity of the eigenvalues of

“symmetric” matrices , that is Lemma 2.1 , Prob[C ) -
~~ 1.

4. ASYMPTOTIC DISTRIBUTION OF THE EIGENPROJECTION

Let w = Os . ,  A .1 , . . . ,  A .~~~ 1
} and let w ‘ {A .~ 1

, ... ,

Also, for A an eigenvalue of M, let 
~A 

represent the sigenprojection of

M associated with A , and let 
~A 

= CM — AI)~ . For A an eigenvalue of
A

H , let 
~A 

represent the eigenprojection of N associated with A , and 
A

let Q a (M — Al) . For convenience , define P = I P and P = I AP •A o A€w A o AEW A

P represents the total eigenprojection of M associated with the eigenvalues

-7-
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A
of N in w , and P represents the total eigenprojection of N associated

with the eigenvaLues of N in 
~~~

.

The null hypotheses (1.1) can thus be rephrased as

(4 . 1)  H : P A A
0 0

where A is (p x r) with rank(A) = r.
A

A natural s t a t i s tic  to consider in testing H is (P A — A). En
0 0

obtaining the asymptotic distribution of this statistic , the Taylor

series expansion of P
0 about P is to be used . This expansion is given

in the following lemma . The lemma is a simplified version of more

general results given in Chapter 2 of Kato (1966). A proof of this

simplified version can be found in Appendix B of the author ’s dissertation .

LEMMA 4.1. Let d = min{A . — A . ,  A . — A . } , and d = (A . — A . ).
0 3.— I 1 i+m— l 1+m 1 ~

Also define the norm I l s i l  = [ma x e igenva 1ue(r 1B ’ rB ) ]~~.

If I IM~ 
— NI l  � d / 2 , then

= P
0 

— ZAEW A n M
~~A 

+ QA (MU M)Px] + E

where H E ~~I I  � (1 + d/d )(211M — MI I/ d )2(l 2j IM —Ml I /d )~~

This lemma immediately yields the following limiting dis tribution ,

(4.2)  a ( ~ - P )  -~~ N AEw~~A~~ A + QXNP A
]

A
in ~is ’ i ~ ut ion . So , under 11 , a (P A — A) -~ N A in d is t ribut ion , wi th

0 fl 0 o

the covar iance matrix of N A being
0

—8—

_ _  _ _ _



I

(4.4) I (A) = A’IA , where

A = - 
AEwPA O (I~~~~~~~~ O 

I) = 
AEW ~~~~~~~

‘P
~
A 0 P~

In the next sect ion , the asymptotic  normal i ty  of a~(~ 0A 
— A) is to be used

in forming an asymptot ic  chi-square  t e s t .  Before doing so , the rank of

1 (A) is needed .

THEOREM 4.2. If the columns of A are in the range of P , then

rankCt (All = (p—m)r.

PROOF . The proof consists of determining the null space of

For C which is (p x r), [vec(rG)]’I (A) vec(i’G) = [vec(rB)J’Ivec(rB),

where B = ZA~ wZ W
(A_

~
1) ’P

U GA ’PA .  So b y Assumption 2 . l . i i i , I. (A)vec(FG) = 0

imp lies M (B + B’)  = 0 , which implies P G  = 0 for  ~‘ .
~ 

w.

Th e last imp l icat ion is j u s t i f i e d  b y the following contrapositive

argument. Suppose ~1 w and P
U
G � 0. Case I: 0 ~ w.

M (B + B’ )P = 
Aew~~

’
~~~ 

‘PA
)AG?P

U ~ 
0 since rank[(ZAE

A( A U) ‘PA )A = r.

Case II: 0 E w. P M(B + B’) = 1iP
~
GA’(I

~~~
(A_u) ’P

~
) ~ 0

The converse , that is P~G = 0 for all ~.i ~ w imp lies I (A)vec(r’c) = 0.

is obviously true. Thus , the null spac e of I (A) is r~ = fvec(iG)I (i—P )G = 01.
0 0

Thus , d imension(fl) = mr, and so rankCl0(Ali 
= (p—m)r.

5. AN ASYMPTOTIC Cat-SQUARE TEST

In this sect ion , an asympto t ic  chi—square  test  of H is given which

is based upon the asymptot ic  normali ty  of a ( P A — A ) .  Due to the

s ingular i ty  of 1 (A ) ,  the chi—square test and i t s  propert ies  are not

s t raightforward . So , for c l a r i ty ,  most proofs for this section are

I 
given in the appendix.

—9—
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• 1

THEOREM 5.1. Let

A A A A A A A
= (A’ OI)[E

AE~~
Pt

x OQ A
(I_P

o)]Ifl
[z

AE
A P

A ® 
(I—P’)Q~](AØI),

A — Aand le t  [10 (A ) J  represent  any general ized  inverses of 1 (A) .

Also , de fine T (A) = a Cvec [(P — I)A] }’[Z (A ) ]  vecE(P — t )A] .
- n n 0 0 0

Then , under H , I (A) -, in distribution.o a r(p—tn)

PROOF . See the appendix.

Theorem 5 states that the limiting distribution of T (A) under H
n o

• does not depend upon the choice of generalized inverses for 1 (A) . The

next theorem states that asymptoticall y the value of T (A) does not depend

upon the choice of the generalized inverses for 1 (A).

THEOREM 5.2. Let I (A) be defined as in Theorem 5.1.
A

( 1) On the set {ra nk(P A) r } , T (A) is invariant  under d i f f er e nt
0 n

A
choices of a generalized inverse for I (A).

( i i)  ~Th eth~ r or not H is true , Prob [rank(~~ A) = r] + 1.

PROOF. See the appendix.

A
So , on the set {rank(P A) = r}, T (A) is unique and the Moore—

Penrose inverse for ~~(A) can thus be used on this set. In addition , if

H is symmetric , then T~(A) has the representation

( 5.1) T (A ) = a
2
[vec(A)]’[~ (A ) fv e c (A )H n n o

-10-
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— .

on the set Crank(P
3
A) = r}. This statement is justified by noting that

for a sytmnetric matrix B , Bx = 0 if and only if B~x = 0, and it is easy
A A

to verify that I (A)vec(P A) = 0.
0 0

Now , app lication of Theorems 5.1 and 5.2 gives the following asymptotic

n level test of ~i0
(5.2) Reject H i f

Ci) rank(P A) < r. or

(i i)  rank(P A) = r and T (A) >

where X~ (cL) is the (i—a ) ?crcent ile of a distribution .

By Theorem 5.2.ii , it is irrelevant to the asymptotic properties of

A
a test of H what action is taken on the set (rank(P A) < r}. However ,

o o

rejecting H for this case enables the rejection region to be “continuous”

in the sense that for any sequence {A
~K
} such that rank(P A

k
) = r and A

k ~

where rank(? A) < r, then
0

( 5 .3)  T (&) -~~ ~~~ , as k -‘~U K

The proof of property (5.3) is given in the appendix. Property (5.3) is

important when using the test defined by (5.2) for constructing confidence

regions for  the range of P .  This is done in the next section.

Although the test of H defined by (5 .2)  was intuiei’~’~!.:’ ‘~oti~vated ,

it does have the following important properties .

THEOREM 5 .3

(i) (5.2) is a consistent test of H .  That is , if H is not true ,

then Probtrejecting H ] -~ 1.

(i i)  ( 5 . 2 )  is invariant under post —mult i p l icat ion of A by a non—

singular matrix .

PROOF . See the appendix.

• — 11—
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Theorem 5.3.i i  is important since the hypothesis H0 is invariant  under

post—mult ipl icat ion of A by a non—singular matrix. Thus , the test given

by (5.2) tests whether the space spanned by the columns of A is a

subspace of the range of P .

REMARK 1. If the assumption A~_1 ~ A . or the assumption A~~~_1 ~ A .4

is false , then the asymptotic chi—square test given by (5.2) is noC

generally valid . If the assumptions on the eigenvalues are true , then by Lemma

4.1, the “samp le” size n necessary to insure that the asymptotic chi—

square test is a “good” approximation is in general inversely related to

the quantity utin(X1..~1
— 

~i~
Xi+m_ i 

— X 1~~
).. In addition , if A .1  is “close”

to A ., one may not wish to study the eigenspace associated with

separately from the eigenspace associated with A .. So, in practice ,

before determining which eigenspaces are of interest , a study of the

eigenvalues would be desirable.

REMARK 2. Let v = {X ., j € t}, where I is some index set. Under

the assumption A . 
~ 

A
k for all j c I and k ~ I, consider the hypothesis

(5.4) H :  the columns of A lie in the subspace generated by the

eigenvectors of M associated with fA ., j €

where A is (p ~ r) with rank(A) = r � m = rank(Z
A

P
A
). This hypothesis

can be tested by using the test given by (5.2) provided w is replaced by
A A A

v and w is replaced by v a {X . ,  j c i}.

REMARK 3. Under the assumption A 1_1 � A. and A j+m_ i ~ 
A .~~~, consider

• the hypothesis

(5.5) H : the elgenvectors of M associated with the roots A .,A . ,.. .,A0 • 1. t+1
lie in the subspace generated by the column s of A ,

—1 2—
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~

where A is (p ‘ r) with rank(A) = r ~ m. Th is hypothes is can be tested

by using the following approach . Let ~ be Ep x (p—r)} with rank(S) = p—r

and such that A ’B  = 0. The hypothesis (5 .5)  can then be rephrased as

(5 . 6) H0 : the columns of B lie in the subspace generated by the

eigenvectors of N ’ associated with  the eigenvalues

A ,X ,.. .,A . ,X . ... A1 2  i—I i+m ‘ p

• Note that if M is symmetric in the metric of r, then N ’ is symmetric in

the metric of r 1 It is easy to verif y that if the conditions on M, r,

• N , 1’ , I and I given by Assumptions 3.1 and 3.2 are sat isf ied , thena n n

the conditions are satisfied when H, r, M , r , I and I are replaced b y

M ’, r~~, N
’, [‘~~~~, var(N ’) = I I I and I I I respec—n n (p,p) (p,p) (p,p) a (p,p)

tively. So , by remark 2 , th e resul t s  of th i s  section app ly to

testing the hypothesis (5 .6) .

Note that if r = in , then the hypothesis (1.1) and (5.5) are equivalent.

For th is case , the test given by (5.2) when applied to the hypothesi s

(1.1) is the same as the test for (5.5) suggested in this remark.

6. ASYMPTOTIC CONFIDENCE REGIONS

For A which is (p x in) , let L(A) represent the space spanned by the

• columns of A. That is,

L(A) {v e R~ I Mi for some

The test of hypothesis (1.1), when r = in , given by (5.2) yields the

following asymptotic (1—ct) confidence region for the range of

(6.1) {1.(A) I A is (p x i n ) ,  rank(A) in, and T
n

(A) <

—13—



One “undesirable” aspec t of tnis conf idence region is tha t  T (A)

involves a generalized inverse of 1 (A), which must be recalculated for

each A. However, this problem can be alleviated and the confidence

region can be given a simplier representation.

To make the simplification , let

(6 .2)  x = E~ . ~~~ . ... ~~~. 
],

a ~ i ‘~i+1 —i+m—l

A A A A  A Awhere {x.} is defined such that M x. = A .x ., and x~r x -~ & . . By
- 

n j  j—j ‘~j n k  ij

noting that = x~ x ’r . it can then be easily verified that

I (A) = (A’-r X ® ] )Z  (x ) (x ’ r A ®  I).
3 o a n  o a a n

So, by Theorem 5.3.ii , if rank(~~A) = m , then

r (A) = T CA(x ’r A) ~] = a
2
fvecCA (x’f A )~~ — x ]}’~ (x Y’vecCA(x’r AY 1 

- x ] .

Thus , (6.1)  can be rewrit ten as

(6.3) {L(A) I x’r A = I and a
2
Cvec(A—X )]‘I (X )~vec(A—X ) < (a)}.

n n  a n o a a ni( p—m )

For the special case in = 1, (6.3) reduces to

A 2 A 4 A 2(6.4) {ca I x!r a = 1, and a (a—x.)’ft (a—x.) < x ( c t ) } ,
n’-~~~L fl~~~~~i p—I

A A - A +where A = Cx ! 0 (N A .i) ]j Cx . 0 (M’ X .I) ].n ~~ a n i  n ~.

• If H and H are synunetric , (6.3) and (6.4) respec tively reduce to

(6.5) {L(A) I X’A = I and a2Evec(A)]’I (X)~ Cvec(A)] < X
2
~ (p_ ~)

(ct)}
~

and

(6.6) {c~ I 

~~~ A 

and a2~ ’A~a < x~_ 1(ct )} , 

+where A C~!0 (M —A .I) ]I[~ .Q (N~—A .t) ].

-14-
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7. EXAMPLES

I) PRINCICAL COMPONENTS ANALYSIS. One of the most common uses

of eigertvectors in statistics is in the princ ipal components analysis

of a covariance matrix for a cnultivariate normal distribution . For

this case, N is taken to be the sample covariance matrix from a sample

of size a from a tnultivariate normal distribution with nonsingular

covariance matrix N. That is, M (1/n)Z~
’ (Y .—Y)(Y — Y)’, where

a

,Y are i.i.d. Norma1(~~, H).

It is well—known that 1(M —M) + N in distribution , where vec (N)

has a inultivariate normal distribution with zero mean and

covàriance matrix I (I + I )(M 0 M). (See Izenman (1976) or
(p,p)

Magnus and Neudecker (1979).) Choose = (I +

It can then be verified that Assumptions 3.1 and 3.2 are satisfied , and

so the results of this paper apply to this example.

On the set rank(P A) = r, we have the representation

(7 .1)  T (A) a ~~~~~ 1.L~~Trace{g~~~A[A’X D ( ~.t)X ’A]~~ },

where X is defined in (6.2) and D (ii ) is an Cm x in) diagonal matrixa a

with entries A ./(A.-~ji)
2, j i,i+l,...,i+m—1. For the important case

r = in , (7.1) becomes

(7.2) T (A) = n Trace{A t N~’A(X i &) l
4~(A~X ) 1 

+

A’MA (X’A) &.(A’~X )  — 2A’A (X’A) (A’X ) 1},

A A A
where~ is an (m x in) diagonal matrix with entries X.,X. ,...,A .a 3. i+1

In particular , for in 1, (7.2) becomes

(7.3) 1 (a) = nCX .a ’M + X .’I’M a  — ~~~~~~~~~~~~

—15—
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Under the null  hypothesis , this s ta t i s t i c  is asymptotical ly equivalent

to the test statistic given by Anderson (1963). Anderson ’s statistic is

(7.4) nCA .a~M a + A .a’H a — 2] ,
~ n~~ ].~~ fl

with a normalized such that a’a = 1.

II) CANONICAL ANALYSIS. Another cot~~on use of eigenvectors in

statistics is in the canonical analysis of the joint covariance

matrix for two random vectors which are jointly multivariate normal.

For this case, N C11C12C22c21 and N C
1~
C12C;~C2ji where

C = 

{

~ ii c
12] and C = 

11

C21 C22 C21 
C
22

• C represents the sample covariance matrix for a sample of size n from

a (p x q) multivariate normal vector with nonsingular covariànce matrix C.

For this example , r = and r c11.
By expanding H in a Taylor series about C , we note that  /~ (M — H) ÷ N

in distribution , where vec(N) has a multivariate normal distribution

with mean zero and co-variance matrix

(7.5) i r(z-~~) ® + r(M-M2 ) 0 r~
1
(I-2M ’)•

+ r {(I—M) 0 (M’—CMI2) (M—M 2) 0 (i—&)}
(p,p) 

-

Choose to have the same form as 1 with and M~ replacing r and

M respectively. For C12 ~ 0, it can be verified that Assumptions 3.1

and 3.2 are sa tisfied, and so the results of this paper apply to this
~~~ -

example.

On the set rank (P A) = r , we have the representation

(7.6) 1 (A) n E~~A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

• 

.

—16-
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where D
~
(u) is an (m x in) diagonal matrix with entr .’s

= j,i+l , .  . . ~~~~~~
In particular , for m = 1 , (1.6) becuu~e~

A 2 A A —1 A 2
(7.7) I (a) = aa ’r (H -A .l) [(1-2A .)M + A .I~ a/[(1-~.)(a ’r x.) ].

n
~~ 

a a ~. n i ~. rri.

— 17—
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APPENDIX

In this appendix , the proofs for section 5 are given. These

proofs are given in the same order in which they appear in section 5

with the exception that the proof for Theorem 5.1 fol lows the proof for

Theorem 5 .2 .

Before presenting the proofs , the fol lowing lemmas concerning

quadrat ic f orms involving singular matrices are needed .

LEMMA A.l. Let S be a positive semi—definite symmetric matrix

of order Cs x s), x e range(S), and B a (a x k) matrix with rank(B) =

then ( i)  x ’B(B ’ SB) B~~ is invariant with respect to the choice of the

generalized inverse for  B ’SB .

(i i)  ~ ‘B ( B ’SB) B ’~ � x
’S~~ , with 

equality ~f k = S .

( iii)  x ’s~~ � (x’x) 2(x ’Sis)~~~

LEMMA A .2 .  For Y,~, an s—dimensional random vector , if

( i )  Y ÷ Norma t(O,S) in d i s t r i bu t ion , with r ank( S)  =
—a

(ii) S ÷ S in probability,

(iii)  rank(S~ ) ÷ r in probabi l i ty,  and

(iv) ProbC~~ c range (S~
)] ÷ 1,

then for any sequence of generalized inverses for 5 ,

y ’s~y ÷ ~2 j~ distribution.-n fl-n r

LEMMA A.3 . Let S and S be random matrices such that S ÷ S in
a a

distribution . If rank(S) = r almost surely, and rank(S ) � r, then

rank(S~) ÷ r in probability. Alternatively, ProbC rank(S ) = r) I..

—18—



The proo f for Leimna A . l  is s t ra ight forward and can be found in Appendix

C of the author ’s dissertation. Leimna A .2 is a corrected version of

Theorem l.b given by Moore ( 1977) .  Proo f ’ s Eor Lecnnas A.2 and A .3

can also be found in Appendix C of the author ’s dissertation.

Finally,  the following special case of the thec,rem given by Okamoto

(1973) is needed before the proofs for section 5 can be given.

LE~~LA p.4. If B is a (k~ 
x k,) random matrix such that

vec(B )  ~jormal(O,S) with rank(S) = k
1
k2, then rank(B) = rnin (k1, k2

) almost

surely.

Proof of Theorem 5.2.i. By noting that ~~(A) = 
~~(~~A) is a sample

-version of 1 (A) in Theorem 4.2, we obtain

(A.l) rank[~~(A)) = (p’-m)r ,

whenever rank(P A) r. It is then easy to verify that if rank(P A) r,

then rangetl (A)] = rangeCi 0 (I—P )]. So, by noting that
A A A

C I 0 ( i— P ) Jv ec C(I—p )A] = vecC (i—P )A], we have0 0 0

(A.2) if rank(~~A) = r , then vecC (I—~ )A] is in range[~~ (A)].

The proof for Theorem 5.2.i is comp leted by applying Lemma A.l.i to• - 1 1(A ), U~jflg 5 I.

A
Proof of Theorem 5.2.ij. Let r = rank(P A), and let C and C beJ. o 

- 
1. 1

the total eigenprojections associated with the largeic eige~valuei of
- A A A A

A ’P’rP A and A ’P’I’P A respec tively. Also, let C I—C , and C0 = I—C0 0  0 0  0 1. 1

By noting that (P A~1
)’1’(P A C) = 0 and ~~~~~~~~~~~~~~~ we have 

A A Arank(P A) ~ rank(P AG ) + rank(P AC ). Now, since rank(P AC ) = rank(G’ A’P’rp AC )
0 0 0  0 1  0 1  1 0 0 1

and G~A’ 2’ l’P AG
1 A’ P’ rp A in probabilit y, it follows from the

H i
- 

•



_ _ __ _ __ __ _ __ _ __ _  -

~~ 1
cr ,npintlitv of eic’~nvalues of symmetric matrices that

A
rank(P

0
AG

1
) -~ r~ in probability . So, we only need to show that

rank(P0
AG) -+ (r—r

1
) in probability.

To show this , us ing Lemma 4.1 , we obta in the Tay lor ser ies
A A A +c = — C (A ’P’rP A — A’ P’FP A) (A’P’i’P A)
0 0 0 0 0  0 0  0 0

~ , + , A~ A ~ —2
— (A PrP A) (A P

0
CP A — A P r P A)G + O(a ).

lJsing this expansion , and the expansion for 
~~ 

given by Lemma 4.1,

we obtain

A A
(A.3) a(P AG ) W~~~~B E  PNQ AG

fl o 0 O AEW A A 0

in distribution , where B = [P — P A(A~P
trP A)~A

’P’I’]
0 0 0 0 0 0

Noting that C and B are projections with rank(G0) = (r—r
1
) and

rank(B0) = (m— r
1
), we can choose matrices C

1 
and C

2 
of dimension

Cr x (r—r
1
)] and [p x (tn— r

1
)] respectively, such that raak(C

1
) = (r—r

1
),

rank(C ) = (in—r ), C C = C and B C = C . It can then be shown that2 1 o l  1 02 2

for any C (r—r
1
) x (mr

1
)] matrix C,

(A.4) var-(Cvec(C)]’vec(C’J’WC )} = Cvec (l’c )]‘Ivec(rc ) ,2 1 0

where C
0 

= Z
AEw

P
AC2

CCiAQ~
. For C ~ 0, (A.4) is positive. This follows

by noting that E
A Z~~~~ 11 ’(h1 1)P M~~~~+c~~)P~ = AC1CC ~ 0 , and so

M(C +C ’) ~ 0. Thus, by Assumption 3.l-.iii, (A.4) is not zero.

Since (A.4) is positive for C ~ 0, this implies that.

rank[var (C~rwc1
)J = (m— r

1
)(r—r

1
) .  So, by Lemma A.4, rank(C rWC

1
) = (r—r

1
)

almost surel y. Also , since (r—r
1
) ~ rantc(W) ~ rank(C~c~C1

), the rank

of W is almost surely equal to (r—r
1
).

-20-
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The proof to Theorem 5.2.ii is completed by noting that

raak(a p ~~ ) (r-r
1
), and then app lying Lcmrna A .3.

n o  0

Proof of Theorem 5.1. This proof consists of showing that the c~- .-
A

dit ions of Lemma A .2  are sa t is f ied when using a vec [(P —I )A ]  for  Yn o n
A

and I (A) for S . Condition Ci) follows from (A.2). Condition (iv)
o n

follows from (A .2 )  and Theorem 5 .2.i i .  If condition (ii) is satisfied ,

then condition (iii) follows from (A.l) and Lemma A.3. So, it only

needs to be shown that condition (ii) is satisfied , that is, to show

A
that I (A) ÷ I (A) in probability. Since I ÷ I in probability , it

0 0 fl

is sufficient to prove that

(A.5) Z A 
~ ~~~~~ 

~~~~~ 
) E Px~w ~~ 

0 
~~~~~~~~~~~~~~ 

),
A € w  A 0

in probability . 
-

Before probing (A.5) , additional notation is needed . If

A ~ A = ... = A ~ A , then define 1(X ) = a, u(X ) = a+b, mU ) = b+la—i a a+b a+b+i

and ~(A ) = , ..., 
~ I. Also, define d (A,~ ) = (X— ~i)~~ , and for Aa a a+b

and ~.i which are elgenvalues of M, define

A A
d(A,~) 

~~u(A) Eu(I.
~
) 

d(A. A )]/[m(A)m(ij)J, provided A ~ ~.t . By the continuityj=1U) k=l(~j) j ,  k
A

of eigenvalues, that is Lex a 2.1, we note that d(A ,M) ÷ d (A,i.i) in probability .

Also , if a E ~(A) and ~ c ~~(~i ) ,  then d(a,8) -~~ d(A ,IA) in probability.

So, if we define the norm on all (p x p) matrices

I 15 1 ‘C = [max eigenvalue of C 1B 1C5]½ where C is a symmetric positive definite

matrix of order (pxp), then

A
(A .6 )  

~ csc~ (X) Z A d(a ,8)P~ ~~ 
— 

~
(A ,I1)[Z A (X)~

? 
~~ 

E A ~8cw(i~) 8 n

~ ~u(A) E~
(M )  A A A

j=l (X) k (u)k(~~
,Ak
) — d(A ,ii)l .

—2 1—
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By the arguments of the previous paragrap h , it fol lows that  the ri ght—

hand side of (A.6) goes to zero in probability . Note that if HB H r ÷ 0

in probability , then H B H r -
~~ 0 in probability , since r r in probability.

So , the lef t—hand side of (A.6) goes to zero in probability if the norm

are replaced by t I ~ I I r .
a A

Thus, since by (4.2) E
a

A
(X)Pa 

÷ 2A in probability , we have

(A .7) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 ~8 ÷ ZAEw~u~w
d (A

~
1.t)Px ~~~~ ‘

in probability . The proof of Theorem 5.1 is comp leted b y not ing  that

the left and right hand sides of statement  (A.7 )  are the same as the l e f t

and right hand sides of statement (A.5) respectively.

A
Proof of stat e~~.n~~ ( 5 .3) . Let r = rank(P A ) ,  and let B be a

0 0
A

Cr x (r—r )J matrix with ramk (B) = r—r and such that P AB = 0. By0 o o

(A.2) , we can app ly Lemma A. 1. -ii and A . l . i i i  to obtain

(A.8) T ( A k
) � T ( A .~B) � a2( b

k
)2Cb Z ( A,

~
R)b

k
)’

where = vec[(
~~

_I)A.KBJ . As k -‘ ~~~, I (A ,~B) + 0 and ÷ vec(-AB) , wh ich

is non—zero. Thus, the right—hand side of (A.8) goes to infinity .

Proof of Thaorem 5.3.L By Theorem 5.2.1, ProbErank(~~A) < r] ÷ 0.

Thus, we only need to show that if H is false, then
• 

- 
Probt rank (2

0
A) r , T (A) > c] ÷ 1, for any constant c. By (A.2), we can

apply Lemma A.1.iii to obtain

(A.9) I (A) � a2(c’c )2[? ~ (A) c

~1 a n~~ rn n o  n

A A
where c a vecC(P

0~
I)A]. Note that the proof for 10

(A) converging to

in probabi lity jiven in the proof for Theorem 5.1 does 
not depend

—22— 
-

~~~

-

- 
- - -: . - - .~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

I

’

on the t ru th  of H .  So , since c converges in probability to vec[(P —I)AJ,

which is non—zero , it follows that the probability the right—hand side of

(A.9) is greater than any fixed constant c goes to one.

Proof of Theorem 5.3ii. Let B be an (r x r )  non—singular matrix.

If rank(P A) = r , then rank(P AB) = r. Also , by (A .2 )  and Lemma A . l . i ,

we have T CAB) = T (A).
a a

/
/

41

-23- -

H

- ~~~~~~~~ _ _

_ _ _ _ _ _ _ _ _ _ _ _  
- 

- - - - -~~~~ - _ _ _ _ _ _ _ _ _ _ _ _  - . -~~~~~~ -



_ _ _ _ _  _ _ _-~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r

REFERENCES

Anderso’- I. W. (1951). An asymptotic distribution of certain charac-

teristic roots and vectors . Proc. Second Berkeley Symp. Math. Stat.

Probability 103—130 . Univ. California Press.

Anderson , T. W. (1963). Asymptotic theory for principal components

analysis . Ann. Math. Stat.  34 122— 148 .

Chambers , J. M. ( 1967) . On methods of asymptotic approximations for

multivariate distributions . Biotnetrika 54 367—383 .

Izenman , A. J. (1976). Reduced—rank regression for the tnultivariate

linear model. J. Multivariate Analysis 5 248—264.

James, A. T. (1977). Test for a prescribed subspace of principal com-

ponents. Multivariate Analysis — IV (P. R. Krishnaiah, Ed.)

pp. 73—77. North Holland Pub . Co., Amsterdam .

Kato, T. ( 1966) . Per turbat ion Theory for Linear 0~erators.  Springer —

Verlag, Berlin.

Mallous, C-. L. (1961) . Latent vectors of random symmetric matrices.

Biometrika 48 133—149.

Magnus, J. R. and Neudecker , H. (1979). The commutation matrix~ some

properties and applications . Ann. Statist. 7 381—394.

Moore , D. S. (1977). Generalized inverses , Wald ’s method, and the con-

struction of chi—squared tests of fit. J. Amer. Statist. Assoc. 72

131-137.

—24—

_ _ 
_ i- —- ~~ 

- - 

-. -~~~~~~~~~• - z ~~ ,T --- -—_ -—



a

Nerring, E. D. (1970). Linear Algebra and Matrix Theory, 2nd Edition.

Wiley, New York.

Neudecker , H. (1968). The Kronecker matrix product and some of its

applications . Statistica Neerlandia 22 69-82.

Okamoto , M. (1973). Distinctness of the eigenvalues of a quadratic

form in a multivariate normal sample. Ann. S ta t i s t .  1 763—765.

Rao , C. R. and Mitra , S. K. (1971) Generalized Inverses of Matrices

- 
and its Application. Wiley, New York.

Suguira, N. (1976). Asymptotic expansions of the distributions of the

latent roots and latent vectors of the Wishart and utultivariate

F matrices.  J. Multivariate Anal. 6 500—525.

F -

Tyler, D. B. (1979). Redundancy Analysis -and associated asymptotic

distribution theory. Ph.D. dissertation , Princeton University,

Princeton, New Jersey.

David E . Tyler

Department of Mathematical Sciences

Old Dominion University

Norfolk , Virgin ia 23508

-23=



UNC LA SS IF 1~ n
sEcunI r’v C LASSIcICATI0N OF Tt4IS P A G E  (WPi n Do.. tnt.,Od)

REPORT DOCUMENTATiON PAGE 1 BEFORE COMP tET ~~G FORM
I. REPORT NU M b E R / 2. ~~ VT ACCESSIoN MO. 3. RECIPIENT ’S CA 1 ALOG NUMbER
Tech. Report #157 , Ser i es 2

4. IITt. E (end Subtitl.) S. TYPE 01 REPo RT 4 PERIOO COV EREQ

ASYM PTOTtC INFER ENCE FOR EIGENVECTORS Tech . Report
4. PERFORMING ORG. REPORT M U M  SEP

1. AU TI4OR(.) S. t 3NT RA CT  OR G RA N T  NUMSER(.)

N 0014 -67-01 5 1-0017  andDavi d E. Tyler N00014-75-C-0453/

9. PERIORMI NG OR GA N I Z AT IO N NAM E ANC A007’ESS tO. PU ~~G AM fj EMCN
,
7.~~~ ROJ1~~~T . rAs ~

Depar tment of Statisti cs
Princeton Univers i ty
Pr i nce ton , N.J . ________________________

I. CONTROL LI NG O FFI C E NAME AsS AO ORESS 12. REPOR T SATE

Offi ce of Nava l Research (Code 
October 1979

Arl i ng ton , V i rg i n i a 222 17 13. NU~~S
5

ER OF PAGES

14. M O N I T O R I N G  AGENCY NAME 4 AOORESS(lt cli ff .renl Ire., ContreUln4 001cc) I S .  S E C U R I TY  CLASS. (.1 tAlc t.pott)

UN C LA S S tFT ~~DIS.. OICLASSIFICATIONI 004NGRACIN GSC)4 ESULE

4. OIS’TR ,SUTIO N STATEMENT (of this Ripen )

- 

Approved for public release; distribu tion unlimited.

I? . OISTRIS U TION S T A t E M E N T  (01 tA• .b.tr.ct .nt.n.d In ilh-ck 20. ii dIli.rent fros R.port)

IS. SUPPL E MENTA R Y NOTES

David Tyler is now with the Department of Mathematical Sciences
- Old Dominion Univers i ty , Norfolk , V i rg inia 23508

19. K EY W ORD S (Contffiu. en to,.,.. .ld. if n.c... y end id.,wU~’ by block nienb.e)

H 79 12 14 ~78
(ConUnu. ci, re,.,a. .Sd. If n.c... y end Ide.Iit? by block n~~I~r)

As ymptotic pro cedures are g iven for testing certain hypotheses
:oncern ing eigenvectors and for constructing confidence regions for
igenvectors . These asymptotic procedures are derived under fairly
~enera1 condit ions on the estimates of the matrix whose ei genvec-
:ors are of interest. Applications of the general results to
rincipal components analysis and canoni cal var iate analysis are

DO , ~~~~~, 14~3 EDITION O~ I N O ~~ SS I S OSSO LET E UNCLASS I  Ft ED 
S/N 0t02.LF.0 14.ooO1 

SECU R I TY CL. A1$IFICATION OP TWIS SA GE  ($... Do’. InhstocO)

I  

- _ _


